Search results for " gases"
showing 10 items of 941 documents
Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica
2014
The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 ga…
Self-dressing in classical and quantum electrodynamics
2003
A short review is presented of the theory of dressed states in nonrelativistic QED, encompassing fully and partially dressed states in atomic physics. This leads to the concept of the reconstruction of the cloud of virtual photons and of self-dressing. Finally some recent results on the classical counterpart of self-dressing are discussed and a comparison is made with the QED case. Attention is drawn to open problems and future lines of research are briefly outlined.
Robust non-Markovianity in ultracold gases
2012
We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.
Quantum transport of single neutral atoms
2007
The state-selective (quantum) transport of single neutral atoms stored in a one dimensional optical lattice is a promising technique to implement controlled atomic interaction using coherent cold collisions. This is required in several schemes of quantum information processing. Here, we present a technical implementation of the quantum transport scheme for one, two and more caesium atoms, as well as the manipulation and detection of their internal states.
Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap
2014
We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed…
Rotating quantum liquids crystallize
2006
Small crystallites form when finite quantal systems are set highly rotating. This crystallization is independent of the statistics of the particles, and occurs for both trapped bosons and fermions. The spin degree of freedom does not change the tendency for localization. In a highly rotating state, the strongly correlated bosonic and fermionic systems approach to that of classical particles.
Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes
2008
We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.
One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata
2013
We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.
Pseudo-bosons and Riesz Bi-coherent States
2016
After a brief review on D-pseudo-bosons we introduce what we call Riesz bi-coherent states, which are pairs of states sharing with ordinary coherent states most of their features. In particular, they produce a resolution of the identity and they are eigenstates of two different annihilation operators which obey pseudo-bosonic commutation rules.
Photonic Nambu-Goldstone bosons
2017
We study numerically the spatial dynamics of light in periodic square lattices in the presence of a Kerr term, emphasizing the peculiarities stemming from the nonlinearity. We find that, under rather general circumstances, the phase pattern of the stable ground state depends on the character of the nonlinearity: the phase is spatially uniform if it is defocusing whereas in the focusing case, it presents a chess board pattern, with a difference of $\pi$ between neighboring sites. We show that the lowest lying perturbative excitations can be described as perturbations of the phase and that finite-sized structures can act as tunable metawaveguides for them. The tuning is made by varying the in…